Facial recognition for passport check

dc.contributor.authorAllalou, Rabia
dc.contributor.authorAiouna, Mohamed Riadh
dc.contributor.authorGuerbai, Yasmine (Promoteur)
dc.date.accessioned2024-02-07T12:46:01Z
dc.date.available2024-02-07T12:46:01Z
dc.date.issued2023
dc.description53 p. : ill. ; 30 cmen_US
dc.description.abstractThis thesis explores the implementation and evaluation of deep learning models for facial recognition in the context of passport checks. Key components include VGGFace, MTCNN, LBP, and Siamese Neural Networks. The research compares the performance of these models with state-of-the-art approaches using the LFW dataset. Challenges such as dataset availability, overfitting, and computational resources are addressed. The findings highlight the effectiveness of the models for passport check applications and the need for further research in addressing challenges related to aging, lighting variations, and dataset biases. The outcomes contribute to improving identity verification processes and enhancing passport control and border security systems.en_US
dc.identifier.urihttps://dspace.univ-boumerdes.dz/handle/123456789/13360
dc.language.isoenen_US
dc.publisherUniversité M'hamed Bougara Boumerdes: Faculté de technologieen_US
dc.subjectIntelligence artificielleen_US
dc.subjectReconnaissance facialeen_US
dc.titleFacial recognition for passport checken_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Allalou, Rabia.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: