Predictive Maintenance for a Grinding Machine Tool for Bearing Components Manufacturing, Using ANN Method

dc.contributor.authorRial, Abdelkader
dc.contributor.authorMellal, Mohamed Arezki(Promoteur)
dc.date.accessioned2022-05-17T11:27:24Z
dc.date.available2022-05-17T11:27:24Z
dc.date.issued2019
dc.description121 p. : ill. ; 30 cmen_US
dc.description.abstractThe Work consists in developing, testing and validating in a manufacturing company a neural model for predictive maintenance of a grinding machine-tool type that has, during manufacturing process, the highest number of interruptions due to unpredicted maintenance actions. Based on three years maintenance history, a data base will be realized. This data base will be used to generate a neural model of the predictive maintenance. The neural model will be interrogated and, based on the results, the predictive maintenance plan will be drawn up. Applying this neural model and the predictive maintenance plan in the industrial environment could lead to cost reductionen_US
dc.identifier.urihttps://dspace.univ-boumerdes.dz/handle/123456789/8350
dc.language.isoenen_US
dc.publisherUniversité M'Hamed Bougara Boumerdès: Faculté de Technologie
dc.subjectPredictive maintenanceen_US
dc.subjectMaintenance prédictiveen_US
dc.subjectArtificial neural networksen_US
dc.subjectRéseau neurone artificielen_US
dc.titlePredictive Maintenance for a Grinding Machine Tool for Bearing Components Manufacturing, Using ANN Methoden_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
RIAL Abdelkader.pdf
Size:
6.75 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections